The $H^m$-conforming virtual elements of any degree $k$ on any shape of polytope in $\mathbb R^n$ with $m, n\geq1$ and $k\geq m$ are recursively constructed by gluing conforming virtual elements on faces in a universal way. For the lowest degree case $k=m$, the set of degrees of freedom only involves function values and derivatives up to order $m-1$ at the vertices of the polytope. The inverse inequality and several norm equivalences for the $H^m$-conforming virtual elements are rigorously proved. The $H^m$-conforming virtual elements are then applied to discretize a polyharmonic equation with a lower order term. With the help of the interpolation error estimate and norm equivalences, the optimal error estimates are derived for the $H^m$-conforming virtual element method.


翻译:以美元、 n\ geq1美元 和 $k\ geqm美元 的方式,通过在面部上以通用方式粘贴符合虚拟元素的方式,反复构造以美元、 美元、 美元、 美元、 美元、 美元和 美元为单位的多面形形形形形形形形形体的折合虚拟元件。 对于最低度的立体体数 $k=m美元, 一套自由度仅涉及功能值和衍生物, 最高可在聚点的左端点订购 m-1 美元。 严格证明美元和 美元对齐的虚拟元件的反不平等和若干规范等值。 然后, 以美元为单位的虚拟元, 折合数的虚拟元件元件元件被应用到一个更低顺序的离散式多调调方形形形形形形形形形形形形形形形形形形形形。 在内误差估计和规范等值的帮助下, 最理想的误差估计数是用于 $-m 的虚拟成形形形形形形形形形形形形形的虚拟元方法。

0
下载
关闭预览

相关内容

专知会员服务
77+阅读 · 2021年3月16日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
ICML2019:Google和Facebook在推进哪些方向?
专知
5+阅读 · 2019年6月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月19日
Arxiv
0+阅读 · 2021年7月17日
Arxiv
4+阅读 · 2021年7月1日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
ICML2019:Google和Facebook在推进哪些方向?
专知
5+阅读 · 2019年6月13日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
TCN v2 + 3Dconv 运动信息
CreateAMind
4+阅读 · 2019年1月8日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
PRL导读-2018年120卷15期
中科院物理所
4+阅读 · 2018年4月23日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员