Dynamical systems are found in innumerable forms across the physical and biological sciences, yet all these systems fall naturally into universal equivalence classes: conservative or dissipative, stable or unstable, compressible or incompressible. Predicting these classes from data remains an essential open challenge in computational physics at which existing time-series classification methods struggle. Here, we propose, \texttt{phase2vec}, an embedding method that learns high-quality, physically-meaningful representations of 2D dynamical systems without supervision. Our embeddings are produced by a convolutional backbone that extracts geometric features from flow data and minimizes a physically-informed vector field reconstruction loss. In an auxiliary training period, embeddings are optimized so that they robustly encode the equations of unseen data over and above the performance of a per-equation fitting method. The trained architecture can not only predict the equations of unseen data, but also, crucially, learns embeddings that respect the underlying semantics of the embedded physical systems. We validate the quality of learned embeddings investigating the extent to which physical categories of input data can be decoded from embeddings compared to standard blackbox classifiers and state-of-the-art time series classification techniques. We find that our embeddings encode important physical properties of the underlying data, including the stability of fixed points, conservation of energy, and the incompressibility of flows, with greater fidelity than competing methods. We finally apply our embeddings to the analysis of meteorological data, showing we can detect climatically meaningful features. Collectively, our results demonstrate the viability of embedding approaches for the discovery of dynamical features in physical systems.
翻译:在物理和生物科学的物理和生物科学中,可以发现无数形式的动态系统,这些动态系统在物理和生物科学中都以无法想象的形式出现,然而所有这些系统自然地都自然地进入了普遍等等类:保守或分散、稳定或不稳定、稳定或不稳定、压缩或无法压缩。从数据中预测这些类别仍然是现有时间序列分类方法挣扎的计算物理学中一个基本的公开挑战。在这里,我们提议,\textttt{se-section2vec},这是一个嵌入方法,它不仅可以预测2D动态系统的高质量、体用物理和物理科学的物理和物质系统的高质量和物理代表,但我们的嵌入式分析是由从流动数据中提取几何特征,并最大限度地减少物理知情的矢量矢量矢量矢量流损失。在一个辅助培训期间,从数据中预测这些从数据从数据中预测出一个基本的开放物理序列的等方程式,因此,经过训练的架构不仅可以预测隐性数据的方方方方程式,而且关键是,学会尊重我们内在物理系统的基本结构。我们内部系统的潜在结构的内嵌值分析。我们从内嵌入的内的内嵌化分析过程的内嵌化方法,最后验证我们从一个质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量,我们从一个学习质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量质量,我们从深的内,我们学习到从深深深的内,我们从深深深深深的内嵌入。我们从基基基的内基基基基的内嵌化的内基的内嵌化,从基基基基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基深深深深深深深内基的内基的内基的内基的内,,,从基的内基的内基的内基的内基的内基基基基的内基的内基的内基的内嵌入, 将基基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基的内基基的内基的内基的内基的内基</s>