Competing risk data appear widely in modern biomedical research. Cause-specific hazard models are often used to deal with competing risk data in the past two decades. There is no current study on the kernel likelihood method for the cause-specific hazard model with time-varying coefficients. We propose to use the local partial log-likelihood approach for nonparametric time-varying coefficient estimation. Simulation studies demonstrate that our proposed nonparametric kernel estimator has a good performance under assumed finite sample settings. Finally, we apply the proposed method to analyze a diabetes dialysis study with competing death causes.


翻译:在现代生物医学研究中,相互竞争的风险数据十分广泛。过去二十年来,针对特定原因的危害模型常常被用来处理相互竞争的风险数据。目前没有关于特定原因的危险模型内核可能性方法以及时间分配系数的研究。我们提议使用局部对数对数值的偏差法来估算非参数时间分配系数。模拟研究表明,我们提议的非对数内核估测仪在假定的有限抽样环境中表现良好。最后,我们采用拟议方法分析糖尿病透析研究与相竞争的死亡原因。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年7月15日
【经典书】贝叶斯编程,378页pdf,Bayesian Programming
专知会员服务
247+阅读 · 2020年5月18日
【经典书】统计学习导论,434页pdf,斯坦福大学
专知会员服务
234+阅读 · 2020年4月29日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Python · SVM(三)· 核方法
机器学习研究会
7+阅读 · 2017年8月8日
Logistic回归第二弹——Softmax Regression
机器学习深度学习实战原创交流
9+阅读 · 2015年10月29日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】RNN无损压缩方法DeepZip(附代码)
机器学习研究会
5+阅读 · 2018年1月1日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Python · SVM(三)· 核方法
机器学习研究会
7+阅读 · 2017年8月8日
Logistic回归第二弹——Softmax Regression
机器学习深度学习实战原创交流
9+阅读 · 2015年10月29日
Top
微信扫码咨询专知VIP会员