Domain experts often need to extract structured information from large corpora. We advocate for a search paradigm called ``extractive search'', in which a search query is enriched with capture-slots, to allow for such rapid extraction. Such an extractive search system can be built around syntactic structures, resulting in high-precision, low-recall results. We show how the recall can be improved using neural retrieval and alignment. The goals of this paper are to concisely introduce the extractive-search paradigm; and to demonstrate a prototype neural retrieval system for extractive search and its benefits and potential. Our prototype is available at \url{https://spike.neural-sim.apps.allenai.org/} and a video demonstration is available at \url{https://vimeo.com/559586687}.
翻译:域专家往往需要从大型公司中提取结构化信息。 我们主张采用名为“ Expractive search” 的搜索模式,其中搜索查询以捕捉-slots进行丰富,这样可以快速提取。 这种采掘搜索系统可以围绕合成结构建立,从而产生高精度、低回调的结果。 我们展示了如何利用神经检索和校正来改进召回。 本文的目的是简明地介绍采掘- 搜索模式; 并展示一个用于采掘搜索及其益处和潜力的神经检索系统原型。 我们的原型可以在以下网址上找到: url{s://spike. neural-sim.apps.allenai.org/} 并可在以下网站获取视频演示:\url{https://vimeo.com5595866} 。