In a graph $G=(V,E)$ with no isolated vertex, a dominating set $D \subseteq V$, is called a semitotal dominating set if for every vertex $u \in D$ there is another vertex $v \in D$, such that distance between $u$ and $v$ is at most two in $G$. Given a graph $G=(V,E)$ without isolated vertices, the Minimum Semitotal Domination problem is to find a minimum cardinality semitotal dominating set of $G$. The semitotal domination number, denoted by $\gamma_{t2}(G)$, is the minimum cardinality of a semitotal dominating set of $G$. The decision version of the problem remains NP-complete even when restricted to chordal graphs, chordal bipartite graphs, and planar graphs. Galby et al. in [6] proved that the problem can be solved in polynomial time for bounded MIM-width graphs which includes many well known graph classes, but left the complexity of the problem in strongly chordal graphs unresolved. Henning and Pandey in [20] also asked to resolve the complexity status of the problem in strongly chordal graphs. In this paper, we resolve the complexity of the problem in strongly chordal graphs by designing a linear-time algorithm for the problem.
翻译:$G=( V, E) $( 美元) 没有孤立的顶点的 $G = ( V, E) $( V) $( V) $, 以没有孤立的顶点为主的 $D, 如果每个顶点$ $ = ( subseteq V) $( 如果有另外的顶点 $ $ 美元 = ( D) 美元, 美元 = ( V, e) 美元 中, 美元 $ G= ( V, E) 美元 中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 最低半, 半, 表示 问题 半, 半, 半, 半, 等于 等于 美元, 美元, 美元 。 在 强烈 确定 中, 确定 。