In a graph $G=(V,E)$ with no isolated vertex, a dominating set $D \subseteq V$, is called a semitotal dominating set if for every vertex $u \in D$ there is another vertex $v \in D$, such that distance between $u$ and $v$ is at most two in $G$. Given a graph $G=(V,E)$ without isolated vertices, the Minimum Semitotal Domination problem is to find a minimum cardinality semitotal dominating set of $G$. The semitotal domination number, denoted by $\gamma_{t2}(G)$, is the minimum cardinality of a semitotal dominating set of $G$. The decision version of the problem remains NP-complete even when restricted to chordal graphs, chordal bipartite graphs, and planar graphs. Galby et al. in [6] proved that the problem can be solved in polynomial time for bounded MIM-width graphs which includes many well known graph classes, but left the complexity of the problem in strongly chordal graphs unresolved. Henning and Pandey in [20] also asked to resolve the complexity status of the problem in strongly chordal graphs. In this paper, we resolve the complexity of the problem in strongly chordal graphs by designing a linear-time algorithm for the problem.


翻译:$G=( V, E) $( 美元) 没有孤立的顶点的 $G = ( V, E) $( V) $( V) $, 以没有孤立的顶点为主的 $D, 如果每个顶点$ $ = ( subseteq V) $( 如果有另外的顶点 $ $ 美元 = ( D) 美元, 美元 = ( V, e) 美元 中, 美元 $ G= ( V, E) 美元 中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 美元中, 最低半, 半, 表示 问题 半, 半, 半, 半, 等于 等于 美元, 美元, 美元 。 在 强烈 确定 中, 确定 。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
54+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
已删除
将门创投
4+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
0+阅读 · 2021年10月27日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
0+阅读 · 2021年10月25日
VIP会员
相关VIP内容
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
54+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
82+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
253+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
182+阅读 · 2019年10月11日
相关资讯
已删除
将门创投
4+阅读 · 2019年4月1日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
lightgbm algorithm case of kaggle(上)
R语言中文社区
8+阅读 · 2018年3月20日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
相关论文
Arxiv
0+阅读 · 2021年10月27日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
0+阅读 · 2021年10月26日
Arxiv
0+阅读 · 2021年10月25日
Top
微信扫码咨询专知VIP会员