A \textit{$k$-total coloring} of a graph $G$ is an assignment of $k$ colors to its elements (vertices and edges) so that adjacent or incident elements have different colors. The total chromatic number is the smallest integer $k$ for which the graph $G$ has a $k$-total coloring. Clearly, this number is at least $\Delta(G)+1$, where $\Delta(G)$ is the maximum degree of $G$. When the lower bound is reached, the graph is said to be Type~1. The upper bound of $\Delta(G)+2$ is a central problem that has been open for fifty years, is verified for graphs with maximum degree 4 but not for regular graphs. Most classified direct product of graphs are Type~1. The particular cases of the direct product of cycle graphs $C_m \times C_n$, for $m =3p, 5\ell$ and $8\ell$ with $p \geq 2$ and $\ell \geq 1$, and arbitrary $n \geq 3$, were previously known to be Type 1 and motivated the conjecture that, except for $C_4 \times C_4$, all direct product of cycle graphs $C_m \times C_n$ with $m,n \geq 3$ are Type 1. We give a general pattern proving that all $C_m \times C_n$ are Type 1, except for $C_4 \times C_4$. dditionally, we investigate sufficient conditions to ensure that the direct product reaches the lower bound for the total chromatic number.
翻译:$G$ 的 \ textit{ $k$- g$- g$ 共色} 。 当下限值为$G$ 的最大值是$G$。 当下限值达到时, 图表的颜色据说是 type~ 1 。 $Delta (G)+ 1 的颜色是 $k$ 的颜色, 相邻或事件元素的颜色是不同的。 共色数是最小的整数 $k$, 而G$ 的颜色是 $k$ (G) 的颜色, 相邻或事件元素的颜色是不同的颜色。 共色数是最小的整数, 美元是 $Delta (G)+ 1, 美元 美元 美元 美元 。 直接值是 美元 美元 美元, 普通值是 $ 2, 美元是 美元 美元 美元, 直值是 C 美元= 美元 美元, 直值是 1 美元, 直值是 美元 直径 。