Self-supervised speech representation learning (SSL) has shown to be effective in various downstream tasks, but SSL models are usually large and slow. Model compression techniques such as pruning aim to reduce the model size and computation without degradation in accuracy. Prior studies focus on the pruning of Transformers; however, speech models not only utilize a stack of Transformer blocks, but also combine a frontend network based on multiple convolutional layers for low-level feature representation learning. This frontend has a small size but a heavy computational cost. In this work, we propose three task-specific structured pruning methods to deal with such heterogeneous networks. Experiments on LibriSpeech and SLURP show that the proposed method is more accurate than the original wav2vec2-base with 10% to 30% less computation, and is able to reduce the computation by 40% to 50% without any degradation.


翻译:自我监督的语音演示学习(SSL) 显示在各种下游任务中是有效的, 但是 SSL 模式通常是大而慢的。 模型压缩技术, 如剪裁技术, 旨在减少模型大小和计算, 且不精确。 先前的研究侧重于对变换器的剪裁; 然而, 语音模型不仅使用一堆变换器块, 而且还将基于多个共进层的前端网络组合起来, 用于低层次的特征演示学习 。 这个前端的大小较小, 但计算成本很高 。 在这项工作中, 我们建议了三种特定任务的结构化剪裁方法来处理这些混杂网络 。 有关 LibriSpeech 和 SLURP 的实验显示, 提议的方法比原始的 wav2vec2- base 更准确, 其计算率为10%到 30%, 并且能够将计算率降低40% 到 50 。</s>

0
下载
关闭预览

相关内容

百篇论文纵览大型语言模型最新研究进展
专知会员服务
70+阅读 · 2023年3月31日
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2021年6月15日
Arxiv
11+阅读 · 2020年12月2日
A Comprehensive Survey on Transfer Learning
Arxiv
121+阅读 · 2019年11月7日
VIP会员
相关资讯
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员