There is a local ring $E$ of order $4,$ without identity for the multiplication, defined by generators and relations as $E=\langle a,b \mid 2a=2b=0,\, a^2=a,\, b^2=b,\,ab=a,\, ba=b\rangle.$ We study a special construction of self-orthogonal codes over $E,$ based on combinatorial matrices related to two-class association schemes, Strongly Regular Graphs (SRG), and Doubly Regular Tournaments (DRT). We construct quasi self-dual codes over $E,$ and Type IV codes, that is, quasi self-dual codes whose all codewords have even Hamming weight. All these codes can be represented as formally self-dual additive codes over $\F_4.$ The classical invariant theory bound for the weight enumerators of this class of codesimproves the known bound on the minimum distance of Type IV codes over $E.$
翻译:本地有4美元的环形 4,000美元 用于乘法, 由发电机和关系定义为 $Elangle a, b\mid 2a=2b=0, \, a2=a,\\, b ⁇ 2=b,\, ab=a,\, ba=b\rangle。 我们研究的是, 4美元以上的自体式代码的特殊构造, 费用高于 E, 美元, 依据与两级组合计划有关的组合矩阵, 强烈常规图表 和 Doubly 常规巡演( DRT) 。 我们为 $E, $ 和 4 type 建立准自体型代码, 即所有代码都具有含重的准自体型代码。 所有这些代码都可以作为正式的自体式添加代码, 超过$\F_4. 美元。 典型的变式理论约束了该类编码重量计算器的重量计算器, 其已知的四类代码的最小距离以美元为限。