The Fr\'echet distance is a popular measure of dissimilarity for polygonal curves. It is defined as a min-max formulation that considers all direction-preserving continuous bijections of the two curves. Because of its susceptibility to noise, Driemel and Har-Peled introduced the shortcut Fr\'echet distance in 2012, where one is allowed to take shortcuts along one of the curves, similar to the edit distance for sequences. We analyse the parameterized version of this problem, where the number of shortcuts is bounded by a parameter $k$. The corresponding decision problem can be stated as follows: Given two polygonal curves $T$ and $B$ of at most $n$ vertices, a parameter $k$ and a distance threshold $\delta$, is it possible to introduce $k$ shortcuts along $B$ such that the Fr\'echet distance of the resulting curve and the curve $T$ is at most $\delta$? We study this problem for polygonal curves in the plane. We provide a complexity analysis for this problem with the following results: (i) assuming the exponential-time-hypothesis (ETH), there exists no algorithm with running time bounded by $n^{o(k)}$; (ii) there exists a decision algorithm with running time in $O(kn^{2k+2}\log n)$. In contrast, we also show that efficient approximate decider algorithms are possible, even when $k$ is large. We present a $(3+\varepsilon)$-approximate decider algorithm with running time in $O(k n^2 \log^2 n)$ for fixed $\varepsilon$. In addition, we can show that, if $k$ is a constant and the two curves are $c$-packed for some constant $c$, then the approximate decider algorithm runs in near-linear time.
翻译:Fr\'echet 距离是多角曲线中最受欢迎的异差量。 它的定义是, 一种考虑到两个曲线中所有方向- 保留连续双向双向的微量配方。 由于它容易受到噪音的影响, Driemel 和 Har- Peled 在2012年引入了捷径 Fr\'echet 距离, 其中一个人可以沿一个曲线采用捷径, 类似于对序列的距离进行编辑。 我们分析了这个问题的参数化版本, 捷径由参数 $k$捆绑在一起。 相应的决定问题可以说明如下: 鉴于两个多角曲线, 保留两个曲线的连续双向双向双向双向双向双向双向。 Driemal3 美元和 $B$, 一个参数 美元和一个距离门槛 美元。 允许在一条曲线中采用美元捷径的捷径, 由此曲线和 美元 美元 的 折数 美元 值 。 我们研究 多角曲线中的这一问题, 甚至是一个问题 。 我们提供一个复杂的分析 美元 。