The Fr\'echet distance is a popular measure of dissimilarity for polygonal curves. It is defined as a min-max formulation that considers all direction-preserving continuous bijections of the two curves. Because of its susceptibility to noise, Driemel and Har-Peled introduced the shortcut Fr\'echet distance in 2012, where one is allowed to take shortcuts along one of the curves, similar to the edit distance for sequences. We analyse the parameterized version of this problem, where the number of shortcuts is bounded by a parameter $k$. The corresponding decision problem can be stated as follows: Given two polygonal curves $T$ and $B$ of at most $n$ vertices, a parameter $k$ and a distance threshold $\delta$, is it possible to introduce $k$ shortcuts along $B$ such that the Fr\'echet distance of the resulting curve and the curve $T$ is at most $\delta$? We study this problem for polygonal curves in the plane. We provide a complexity analysis for this problem with the following results: (i) assuming the exponential-time-hypothesis (ETH), there exists no algorithm with running time bounded by $n^{o(k)}$; (ii) there exists a decision algorithm with running time in $O(kn^{2k+2}\log n)$. In contrast, we also show that efficient approximate decider algorithms are possible, even when $k$ is large. We present a $(3+\varepsilon)$-approximate decider algorithm with running time in $O(k n^2 \log^2 n)$ for fixed $\varepsilon$. In addition, we can show that, if $k$ is a constant and the two curves are $c$-packed for some constant $c$, then the approximate decider algorithm runs in near-linear time.


翻译:Fr\'echet 距离是多角曲线中最受欢迎的异差量。 它的定义是, 一种考虑到两个曲线中所有方向- 保留连续双向双向的微量配方。 由于它容易受到噪音的影响, Driemel 和 Har- Peled 在2012年引入了捷径 Fr\'echet 距离, 其中一个人可以沿一个曲线采用捷径, 类似于对序列的距离进行编辑。 我们分析了这个问题的参数化版本, 捷径由参数 $k$捆绑在一起。 相应的决定问题可以说明如下: 鉴于两个多角曲线, 保留两个曲线的连续双向双向双向双向双向双向双向。 Driemal3 美元和 $B$, 一个参数 美元和一个距离门槛 美元。 允许在一条曲线中采用美元捷径的捷径, 由此曲线和 美元 美元 的 折数 美元 值 。 我们研究 多角曲线中的这一问题, 甚至是一个问题 。 我们提供一个复杂的分析 美元 。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
专知会员服务
52+阅读 · 2020年9月7日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Fast Circular Pattern Matching
Arxiv
0+阅读 · 2022年4月20日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
Arxiv
0+阅读 · 2022年4月15日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium5
中国图象图形学学会CSIG
1+阅读 · 2021年11月11日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员