We first give a construction of binary $t_1$-deletion-$t_2$-insertion-burst correcting codes with redundancy at most $\log(n)+(t_1-t_2-1)\log\log(n)+O(1)$, where $t_1\ge 2t_2$. Then we give an improved construction of binary codes capable of correcting a burst of $4$ non-consecutive deletions, whose redundancy is reduced from $7\log(n)+2\log\log(n)+O(1)$ to $4\log(n)+6\log\log(n)+O(1)$. Lastly, by connecting non-binary $b$-burst-deletion correcting codes with binary $2b$-deletion-$b$-insertion-burst correcting codes, we give a new construction of non-binary $b$-burst-deletion correcting codes with redundancy at most $\log(n)+(b-1)\log\log(n)+O(1)$. This construction is different from previous results.
翻译:我们首先给出一个二进制 $t_1$-eletion-$t_2$-2$-Institute-built-built-built-built-command code, 最多为$(n)+(t_1-t_2-1)\log(n)+O(1)$(n)+(n)+(t_1-t_2-1)\log(n)+O(1)$(n)+(n)+(n)_log\log\log(n)+O(1)$(美元)。 然后我们给出一个改进的二进制代码构建, 能够纠正4美元非连续删除, 其冗余由 7\log(n)+2\log(n)+6\log\log(n)+O(1)$。 最后,将非二进制 $2b$-emplement-b$-b$-Intemplement-complen-comen colution colution colution colution colution colution code, 我们给出新的构建与以往结果不同。