We study the decentralized optimization problem where a network of $n$ agents seeks to minimize the average of a set of heterogeneous non-convex cost functions distributedly. State-of-the-art decentralized algorithms like Exact Diffusion~(ED) and Gradient Tracking~(GT) involve communicating every iteration. However, communication is expensive, resource intensive, and slow. In this work, we analyze a locally updated GT method (LU-GT), where agents perform local recursions before interacting with their neighbors. While local updates have been shown to reduce communication overhead in practice, their theoretical influence has not been fully characterized. We show LU-GT has the same communication complexity as the Federated Learning setting but allows arbitrary network topologies. In addition, we prove that the number of local updates does not degrade the quality of the solution achieved by LU-GT. Numerical examples reveal that local updates can lower communication costs in certain regimes (e.g., well-connected graphs).
翻译:我们研究的是分散化优化问题,因为一个由美元代理商组成的网络试图将一系列杂交非节流成本功能的平均值降低到最低程度。最先进的分散化算法,如Exact Difulte~(ED)和Gradient Track~(GT),涉及每个循环的沟通。然而,通信费用昂贵、资源密集且缓慢。在这项工作中,我们分析了一种本地更新的GT方法(LU-GT),代理商在与邻居互动之前进行本地循环。虽然当地更新表明在实践上降低了通信的间接费用,但其理论影响却没有得到充分的特征。我们显示LU-GT与联邦学习设置具有相同的通信复杂性,但允许任意网络结构。此外,我们证明本地更新的数量并没有降低LU-GT所实现解决方案的质量。数字实例表明,某些制度(例如,连接良好的图表)本地更新可以降低通信成本。