Analogy-making is at the core of human intelligence and creativity with applications to such diverse tasks as commonsense reasoning, learning, language acquisition, and story telling. This paper contributes to the foundations of artificial general intelligence by introducing from first principles an abstract algebraic framework of analogical proportions of the form `$a$ is to $b$ what $c$ is to $d$' in the general setting of universal algebra. This enables us to compare mathematical objects possibly across different domains in a uniform way which is crucial for AI-systems. The main idea is to define solutions to analogical equations in terms of maximal sets of algebraic justifications, which amounts to deriving abstract terms of concrete elements from a `known' source domain which can then be instantiated in an `unknown' target domain to obtain analogous elements. It turns out that our notion of analogical proportions has appealing mathematical properties. For example, we show that analogical proportions preserve functional dependencies across different domains, which is desirable. We study Lepage's axioms of analogical proportions and argue why we disagree with his symmetry, central permutation, strong reflexivity, and strong determinism axioms. We compare our framework with two prominent and recently introduced frameworks of analogical proportions from the literature in the concrete domains of sets and numbers, and we show that in each case we either disagree with the notion from the literature justified by some plausible counter-example or we can show that our model yields strictly more reasonable solutions. This provides evidence for its applicability. In a broader sense, this paper is a first step towards a theory of analogical reasoning and learning systems with potential applications to fundamental AI-problems like commonsense reasoning and computational learning and creativity.


翻译:分析是人类智慧和创造力的核心,其应用方式多种多样,如常识推理、学习、语言获取和故事叙事等。本文件通过从头等原则引入“a美元”形式模拟比例的抽象代数框架,即美元等于美元等于美元等于美元等于美元等于美元等于美元”在通用代数总体设置中模拟比例的抽象代数框架,为人为一般一般智能和创造力奠定了基础。这使我们能够以对AI系统至关重要的统一方式,比较不同领域的数学对象。主要思想是确定模拟方程式的解决方案,即最高代数的代数解释理由,这等于从“已知”源域中得出具体要素的抽象代数,然后在“未知”目标域中即可即刻录为“美元”美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元等于美元,在通用代数总体代数的总体背景下,这让我们的模拟性模型能保持不同领域等值的功能依赖性。我们研究Lephed's weximical eximations of wegycity stryal deal strain real intal intal realationalalation and exal real real real real real defal exation, extidust excience first extitudust exmlate.

0
下载
关闭预览

相关内容

专知会员服务
76+阅读 · 2021年3月16日
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
10+阅读 · 2019年3月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月13日
Arxiv
0+阅读 · 2021年7月12日
Embedding Logical Queries on Knowledge Graphs
Arxiv
3+阅读 · 2019年2月19日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
专知会员服务
76+阅读 · 2021年3月16日
最新《图理论》笔记书,98页pdf
专知会员服务
74+阅读 · 2020年12月27日
【阿尔托大学】图神经网络,Graph Neural Networks,附60页ppt
专知会员服务
181+阅读 · 2020年4月26日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
开源书:PyTorch深度学习起步
专知会员服务
50+阅读 · 2019年10月11日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
已删除
将门创投
10+阅读 · 2019年3月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
计算机类 | LICS 2019等国际会议信息7条
Call4Papers
3+阅读 · 2018年12月17日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员