Temporal logics over finite traces are not the same as temporal logics over potentially infinite traces. Ro\c{s}u first proved completeness for linear temporal logic on finite traces (LTLf) with a novel coinductive axiom. We offer a different proof, with fewer, more conventional axioms. Our proof is a direct adaptation of Kr\"{o}ger and Merz's Henkin-Hasenjaeger-style proof. The essence of our adaption is that we "inject" finiteness: that is, we alter the proof structure to ensure that models are finite. We aim to present a thorough, accessible proof.
翻译:时间论对有限痕迹的逻辑与时间论对潜在无限痕迹的时间逻辑不同。 在有限痕迹(LTLf)的线性时间逻辑方面,我们首先证明是完全的。我们提供了一种不同的证据,较少的、更传统的共性。我们的证据是对Kr\"{o}ger和Merz的Henkin-Hassenjaeger式证据的直接调整。我们适应的精髓是“输入”有限性:也就是说,我们改变证据结构以确保模型是有限的。我们的目标是提出一个彻底、容易获得的证据。