With the growing global deployment of carbon capture and sequestration technology to combat climate change, monitoring and detection of potential CO2 leakage through existing or storage induced faults are critical to the safe and long-term viability of the technology. Recent work on time-lapse seismic monitoring of CO2 storage has shown promising results in its ability to monitor the growth of the CO2 plume from surface recorded seismic data. However, due to the low sensitivity of seismic imaging to CO2 concentration, additional developments are required to efficiently interpret the seismic images for leakage. In this work, we introduce a binary classification of time-lapse seismic images to delineate CO2 plumes (leakage) using state-of-the-art deep learning models. Additionally, we localize the leakage region of CO2 plumes by leveraging Class Activation Mapping methods.
翻译:随着碳捕获和固存技术在全球范围用于应对气候变化,监测和探测现有或储存诱发的断层中潜在的二氧化碳渗漏对于技术的安全和长期可行性至关重要,最近关于二氧化碳储存的延时地震监测工作显示,在监测地表记录地震数据产生的二氧化碳羽流增长的能力方面,取得了可喜的成果,然而,由于地震成像对二氧化碳浓度的敏感度较低,因此需要取得更多进展,以便有效地解释地震图象,以便进行渗漏。在这项工作中,我们采用最新的深层学习模型,对时间倒塌的地震图象进行二分法分类,以划定二氧化碳羽流(渗漏),此外,我们利用分类法绘制方法,使二氧化碳羽流流区域本地化。