We study a general online combinatorial auction problem in algorithmic mechanism design. A provider allocates multiple types of capacity-limited resources to customers that arrive in a sequential and arbitrary manner. Each customer has a private valuation function on bundles of resources that she can purchase (e.g., a combination of different resources such as CPU and RAM in cloud computing). The provider charges payment from customers who purchase a bundle of resources and incurs an increasing supply cost with respect to the totality of resources allocated. The goal is to maximize the social welfare, namely, the total valuation of customers for their purchased bundles, minus the total supply cost of the provider for all the resources that have been allocated. We adopt the competitive analysis framework and provide posted-price mechanisms with optimal competitive ratios. Our pricing mechanism is optimal in the sense that no other online algorithms can achieve a better competitive ratio. We validate the theoretic results via empirical studies of online resource allocation in cloud computing. Our numerical results demonstrate that the proposed pricing mechanism is competitive and robust against system uncertainties and outperforms existing benchmarks.
翻译:我们研究了算法机制设计中的一般在线组合拍卖问题。 供应商向按顺序和任意方式到达的客户分配多种能力有限的资源。 每个客户都对其可以购买的资源捆绑具有私人的估值功能(例如,在云计算中将各种资源组合起来,如CPU和RAM等不同资源组合在一起)。 供应商向购买一系列资源的客户收取费用,在所分配的资源总量方面,供应费用不断增加。目标是最大限度地扩大社会福利,即客户对其购买的包包的估价总额,减去供应商对所分配的所有资源的供应费用总额。 我们采用竞争性分析框架,并以最佳竞争比率提供上市价格机制。 我们的定价机制是最佳的,因为没有其他在线算法能够实现更好的竞争比率。 我们通过对云计算中在线资源分配的经验性研究来验证理论结果。 我们的数字结果表明,拟议的定价机制具有竞争力和活力,可以克服系统不确定性,并超越现有基准。