In this paper, we follow Eftekhari's work to give a non-local convergence analysis of deep linear networks. Specifically, we consider optimizing deep linear networks which have a layer with one neuron under quadratic loss. We describe the convergent point of trajectories with arbitrary starting point under gradient flow, including the paths which converge to one of the saddle points or the original point. We also show specific convergence rates of trajectories that converge to the global minimizer by stages. To achieve these results, this paper mainly extends the machinery in Eftekhari's work to provably identify the rank-stable set and the global minimizer convergent set. We also give specific examples to show the necessity of our definitions. Crucially, as far as we know, our results appear to be the first to give a non-local global analysis of linear neural networks from arbitrary initialized points, rather than the lazy training regime which has dominated the literature of neural networks, and restricted benign initialization in Eftekhari's work. We also note that extending our results to general linear networks without one hidden neuron assumption remains a challenging open problem.


翻译:在本文中,我们遵循Eftekhari的工作,对深线网络进行非局部的趋同分析。 具体地说, 我们考虑优化深度线性网络,这些网络有一个层,在四度损失下有一个神经元。 我们描述梯度流下具有任意起点的轨迹汇合点, 包括连接到一个马鞍点或最初点的路径。 我们还展示了不同阶段聚集到全球最小化点的轨迹的具体趋同率。 为了实现这些结果, 本文主要扩展了Eftekhari的机械工作, 以可辨别分级数据集和全球最小集。 我们还举了具体的例子来说明我们定义的必要性。 据我们所知, 我们的结果似乎是第一个从任意初始点对线性神经网络进行非局部的全球性分析, 而不是从主导神经网络文献的懒惰训练制度, 以及Eftekhari工作中的纯度初始化有限。 我们还指出, 将我们的结果扩大到一般线性网络而没有隐蔽的神经假设, 仍是一个挑战性的问题。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
31+阅读 · 2020年4月15日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
13+阅读 · 2021年5月25日
VIP会员
相关VIP内容
相关资讯
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员