We present two new a posteriori error estimates for the Hellan--Herrmann--Johnson method in Kirchhoff--Love plate theory. The first error estimator uses a postprocessed deflection and controls the $L^2$ moment error and the discrete $H^2$ deflection error. The second one is based on the postprocessed deflection and moment fields and superconvergence analysis in both variables. The effectiveness of the theoretical results is numerically validated in several experiments.
翻译:我们为Kirchhoff-Love板块理论中的Hellan-Hermann-Johnson方法提出了两个新的事后误差估计数。第一个误差估计器使用后处理偏转法,控制了2美元瞬间误差和2美元偏转误差。第二个误差基于两个变量的后处理偏转法和瞬间字段以及超趋同分析。理论结果的有效性在若干实验中得到了数字验证。