We introduce I/O-optimal certifying algorithms for bipartite graphs, as well as for the classes of split, threshold, bipartite chain, and trivially perfect graphs. When the input graph is a class member, the certifying algorithm returns a certificate that characterizes this class. Otherwise, it returns a forbidden induced subgraph as a certificate for non-membership. On a graph with $n$ vertices and $m$ edges, our algorithms take optimal $O(\text{sort}(n + m))$ I/Os in the worst case or with high probability for bipartite chain graphs, and the certificates are returned in optimal I/Os. We give implementations for split and threshold graphs and provide an experimental evaluation.
翻译:我们引入了双面图的I/ O- 最佳认证算法, 以及分裂、 阈值、 双面链和微小的完美图表等类别的认证算法。 当输入图表是阶级成员时, 认证算法返回了属于该类的证书。 否则, 它返回了被禁止的诱导子图作为非会员证书。 在以美元为顶点和美元边缘的图表上, 我们的算法在最坏的情况下或者在双面链图极有可能的情况下采用美元( \ text{ sort} (n + m) ) 的I/ O, 证书在最佳的I/ O 中返回。 我们为分裂和门槛图提供实施功能, 并提供实验性评估 。