This paper reviews recent advances in big data optimization, providing the state-of-art of this emerging field. The main focus in this review are optimization techniques being applied in big data analysis environments. Integer linear programming, coordinate descent methods, alternating direction method of multipliers, simulation optimization and metaheuristics like evolutionary and genetic algorithms, particle swarm optimization, differential evolution, fireworks, bat, firefly and cuckoo search algorithms implementations are reviewed and discussed. The relation between big data optimization and software engineering topics like information work-flow styles, software architectures, and software framework is discussed. Comparative analysis in platforms being used in big data optimization environments are highlighted in order to bring a state-or-art of possible architectures and topologies.
翻译:本文件回顾了大数据优化方面的最新进展,为这个新兴领域提供了最新技术。本审查报告的主要重点是在大数据分析环境中应用优化技术。整数线性编程、协调下行方法、交替的乘数法、模拟优化和计量经济学,如进化和遗传算法、粒子群优化、差异演进、烟花、蝙蝠、萤火虫和布谷搜索算法的实施。审查并讨论了大数据优化与软件工程专题之间的关系,如信息工作流程样式、软件架构和软件框架。重点介绍了在大数据优化环境中使用的平台的比较分析,以便对可能的架构和地形进行国家或艺术分析。