We explore a novel application of zero-dimensional persistent homology from Topological Data Analysis (TDA) for bracketing zero-crossings of both one-dimensional continuous functions, and uniformly sampled time series. We present an algorithm and show its robustness in the presence of noise for a range of sampling frequencies. In comparison to state-of-the-art software-based methods for finding zeros of a time series, our method generally converges faster, provides higher accuracy, and is capable of finding all the roots in a given interval instead of converging only to one of them. We also present and compare options for automatically setting the persistence threshold parameter that influences the accurate bracketing of the roots.
翻译:我们探索从地形数据分析(TDA)中将零维持久性同系法用于将单维连续函数和统一抽样时间序列的零交叉值进行分类的新应用。 我们提出算法,并在一系列取样频率出现噪音时显示其稳健性。 与最先进的基于软件的发现时间序列零的方法相比,我们的方法一般会更快地趋同,提供更高的准确性,并且能够在一个特定的间隔中找到所有根部,而不是仅仅将根集中到其中一个。 我们还提出并比较自动设定影响根的准确分类的持久性阈值参数的选项。