Reverse Engineering a CAD shape from other representations is an important geometric processing step for many downstream applications. In this work, we introduce a novel neural network architecture to solve this challenging task and approximate a smoothed signed distance function with an editable, constrained, prismatic CAD model. During training, our method reconstructs the input geometry in the voxel space by decomposing the shape into a series of 2D profile images and 1D envelope functions. These can then be recombined in a differentiable way allowing a geometric loss function to be defined. During inference, we obtain the CAD data by first searching a database of 2D constrained sketches to find curves which approximate the profile images, then extrude them and use Boolean operations to build the final CAD model. Our method approximates the target shape more closely than other methods and outputs highly editable constrained parametric sketches which are compatible with existing CAD software.
翻译:从其他表达式中反向工程 CAD 形状是许多下游应用的重要几何处理步骤。 在这项工作中, 我们引入了一个新的神经网络架构, 以解决这项挑战性任务, 并使用一个可编辑、 受约束、 扭曲的 CAD 模型, 大致使用一个平滑的签名距离函数。 在培训过程中, 我们的方法通过将形状分解成一系列 2D 配置图象和 1D 信封功能来重建 voxel 空间的输入几何体。 然后这些功能可以以不同的方式重新组合, 以便定义几何损失函数 。 在推断过程中, 我们通过先搜索一个 2D 限制的草图数据库来获取 CAD 数据, 以找到与配置图象相近的曲线, 然后将其挤出, 并使用 Boolean 操作来构建最终 CAD 模型 。 我们的方法比其他方法更接近目标形状, 并输出与现有的 CAD 软件相容的高度可编辑的制约参数草图。