This paper proposed a novel large neighborhood search-adaptive genetic algorithm (LNS-AGA) for many-to-many on-orbit repairing mission planning of geosynchronous orbit (GEO) satellites with mission deadline constraint. In the many-to-many on-orbit repairing scenario, several servicing spacecrafts and target satellites are located in GEO orbits which have different inclination, RAAN and true anomaly. Each servicing spacecraft need to rendezvous with target satellites to perform repairing missions under limited fuel. The mission objective is to find the optimal servicing sequence and orbit rendezvous time of every servicing spacecraft to minimize total cost of all servicing spacecrafts with all target satellites repaired. Firstly, a time-dependent orbital rendezvous strategy is proposed, which can handle the mission deadline constraint. Besides, it is also cost-effective compared with the existing strategy. Based on this strategy, the many-to-many on-orbit repairing mission planning model can be simplified to an integer programming problem, which is established based on the vehicle routing problem with time windows (VRPTW) model. In order to efficiently find a feasible optimal solution under complicated constraints, a hybrid adaptive genetic algorithm combining the large neighborhood search procedure is designed. The operations of "destroy" and "repair" are used on the elite individuals in each generation of the genetic algorithm to enhance local search capabilities. Finally, the simulations under different scenarios are carried out to verify the effectiveness of the presented algorithm and orbital rendezvous strategy, which performs better than the traditional genetic algorithm.


翻译:这份论文建议对具有飞行任务最后期限限制的地球同步轨道(GEO)卫星进行许多到许多在轨维修任务任务规划,采用新的大型邻里搜索适应性遗传算法(LNS-AGA),对许多到许多在轨维修任务,对地球同步轨道(GEO)卫星进行飞行任务规划;在多到许多在轨修理假设中,一些维修的航天器和目标卫星位于具有不同倾向、RAAN和真实异常的对地的对地轨道轨道;每个服务航天器都需要与目标卫星集合,以便在有限的燃料下执行飞行任务;飞行任务的目标是找到每个维修航天器的最理想的维修顺序和轨道会合时间,以尽量减少所有使用所有目标卫星维修的航天器的总费用;首先,提出了一个基于时间修理的对地对地对地对地对地轨道进行保养的战略;此外,与现有的战略相比,它也具有成本效益。根据这一战略,许多在轨对地修理飞行任务的规划模式可以简化成一个混合的编程问题,根据车辆定线问题与时间窗口(VRPTW)模型建立起来。为了在复杂的限制下高效率找到一个可行的最佳解决办法,因此,在轨算轨道上,在轨算中,在轨算上对地对地对地对地算进行最精定的对地算的算算法进行最精确的对地算法是用来进行大规模的对地对地对地对地对地算。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
34+阅读 · 2020年5月4日
【实用书】流数据处理,Streaming Data,219页pdf
专知会员服务
76+阅读 · 2020年4月24日
专知会员服务
60+阅读 · 2020年3月19日
【ICIP2019教程-NVIDIA】图像到图像转换,附7份PPT下载
专知会员服务
54+阅读 · 2019年11月20日
知识图谱本体结构构建论文合集
专知会员服务
106+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
5+阅读 · 2021年2月8日
Embedding Logical Queries on Knowledge Graphs
Arxiv
5+阅读 · 2018年9月6日
VIP会员
相关VIP内容
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
学术会议 | 知识图谱顶会 ISWC 征稿:Poster/Demo
开放知识图谱
5+阅读 · 2019年4月16日
计算机 | CCF推荐期刊专刊信息5条
Call4Papers
3+阅读 · 2019年4月10日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【推荐】TensorFlow手把手CNN实践指南
机器学习研究会
5+阅读 · 2017年8月17日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员