In this paper, we propose to predict the physics parameters of real fabrics and garments by learning their physics similarities between simulated fabrics via a Physics Similarity Network (PhySNet). For this, we estimate wind speeds generated by an electric fan and the area weight to predict bending stiffness of simulated and real fabrics and garments. We found that PhySNet coupled with a Bayesian optimiser can predict physics parameters and improve the state-of-art by 34%for real fabrics and 68% for real garments.
翻译:在本文中,我们建议通过物理相似网络(PhysNet)学习模拟织物的物理相似性来预测真实织物和服装的物理参数。 为此,我们估算了电扇产生的风速和面积重量,以预测模拟和真实的织物和服装的弯曲性硬性。 我们发现,PhysNet加上一个巴耶斯的美化师可以预测物理参数,并将实际织物的先进工艺水平提高34%,实际服装的先进工艺水平提高68%。