The creation of unstable heavy particles at the Large Hadron Collider is the most direct way to address some of the deepest open questions in physics. Collisions typically produce variable-size sets of observed particles which have inherent ambiguities complicating the assignment of observed particles to the decay products of the heavy particles. Current strategies for tackling these challenges in the physics community ignore the physical symmetries of the decay products and consider all possible assignment permutations and do not scale to complex configurations. Attention based deep learning methods for sequence modelling have achieved state-of-the-art performance in natural language processing, but they lack built-in mechanisms to deal with the unique symmetries found in physical set-assignment problems. We introduce a novel method for constructing symmetry-preserving attention networks which reflect the problem's natural invariances to efficiently find assignments without evaluating all permutations. This general approach is applicable to arbitrarily complex configurations and significantly outperforms current methods, improving reconstruction efficiency between 19\% - 35\% on typical benchmark problems while decreasing inference time by two to five orders of magnitude on the most complex events, making many important and previously intractable cases tractable. A full code repository containing a general library, the specific configuration used, and a complete dataset release, are avaiable at https://github.com/Alexanders101/SPANet
翻译:在大型高原对流器中创建不稳定重物颗粒是解决物理学中一些最深层开放问题的最直接方式。 碰撞通常会产生不同尺寸的观测粒子,这些粒子具有内在的模糊性,使观测到的粒子分配给重粒的衰变产物更为复杂。 目前在物理学界应对这些挑战的战略忽视了衰变产品的物理对称性,并审议了所有可能的对称性,而且不至于扩大到复杂的配置。 基于测序模拟的深层次学习方法在自然语言处理中达到了最先进的性能,但它们缺乏处理在物理定型任务问题中发现的独特对称的内在机制。 我们引入了一种新颖的方法,用于构建对称性偏重网络,这反映了问题的自然差异,以便在不评估所有变异的情况下高效地找到任务。 这种一般方法适用于任意的复杂配置,大大超越了当前的方法,在典型的基准问题上提高了19-35 ⁇ 之间的重建效率,同时在最复杂的事件上减少2至5级的推论时间,使许多重要的和先前的对称性偏差/ 完全的内存式数据库, 一个重要和先前的可加固性数据库。 一个完整的数据库, 全面的解式数据库, 一个用于一个精确的版本。