This paper introduces a novel method for the efficient and accurate computation of volume fractions on unstructured polyhedral meshes, where the phase boundary is an orientable hypersurface, implicitly given as the iso-contour of a sufficiently smooth level-set function. Locally, i.e. in each mesh cell, we compute a principal coordinate system in which the hypersurface can be approximated as the graph of an osculating paraboloid. A recursive application of the \textsc{Gaussian} divergence theorem then allows to analytically transform the volume integrals to curve integrals associated to the polyhedron faces, which can be easily approximated numerically by means of standard \textsc{Gauss-Legendre} quadrature. This face-based formulation enables the applicability to unstructured meshes and considerably simplifies the numerical procedure for applications in three spatial dimensions. We discuss the theoretical foundations and provide details of the numerical algorithm. Finally, we present numerical results for convex and non-convex hypersurfaces embedded in cuboidal and tetrahedral meshes, showing both high accuracy and third- to fourth-order convergence with spatial resolution.
翻译:本文引入了一种新型方法,用于高效和准确地计算非结构化多元面模的体积分数,使相位边界是一种可调整的超表层,隐含地表示一个足够平滑水平设定函数的等离子体。从局部角度,即在每个网状单元格中,我们计算出一个主坐标系统,在该系统中,高表可以比喻成一个悬浮标本的图示。对正方格的循环应用,从而可以分析将体积组合转化为与多元面相联的曲线组合体,这种组合体可以很容易地通过标准的\ textsc{Gaus-Legendre} 等方形来进行数字近似。这种面基配方能够对无结构的介质的适用性,并大大简化三个空间维度应用的数值程序。我们讨论理论基础,并提供数字算法的细节。最后,我们提出了同轴和非对面面面面面面体的体积分体积组合成成成块状状成曲线,可以显示高分辨率、高分辨率和高分辨率的四等分辨率。