Computing the rotation distance between two binary trees with $n$ internal nodes efficiently (in $poly(n)$ time) is a long standing open question in the study of height balancing in tree data structures. In this paper, we initiate the study of this problem bounding the rank of the trees given at the input (defined by Ehrenfeucht and Haussler (1989) in the context of decision trees). We define the rank-bounded rotation distance between two given binary trees $T_1$ and $T_2$ (with $n$ internal nodes) of rank at most $r$, denoted by $d_r(T_1,T_2)$, as the length of the shortest sequence of rotations that transforms $T_1$ to $T_2$ with the restriction that the intermediate trees must be of rank at most $r$. We show that the rotation distance problem reduces in polynomial time to the rank bounded rotation distance problem. This motivates the study of the problem in the combinatorial and algorithmic frontiers. Observing that trees with rank $1$ coincide exactly with skew trees (binary trees where every internal node has at least one leaf as a child), we show the following results in this frontier : We present an $O(n^2)$ time algorithm for computing $d_1(T_1,T_2)$. That is, when the given trees are skew trees (we call this variant as skew rotation distance problem) - where the intermediate trees are restricted to be skew as well. In particular, our techniques imply that for any two skew trees $d(T_1,T_2) \le n^2$. We show the following upper bound : for any two trees $T_1$ and $T_2$ of rank at most $r_1$ and $r_2$ respectively, we have that: $d_r(T_1,T_2) \le n^2 (1+(2n+1)(r_1+r_2-2))$ where $r = max\{r_1,r_2\}$. This bound is asymptotically tight for $r=1$. En route our proof of the above theorems, we associate binary trees to permutations and bivariate polynomials, and prove several characterizations in the case of skew trees.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
25+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
145+阅读 · 2019年10月12日
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Arxiv
0+阅读 · 5月1日
Arxiv
0+阅读 · 5月1日
VIP会员
相关资讯
【NeurIPS2019】图变换网络:Graph Transformer Network
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Single-Shot Object Detection with Enriched Semantics
统计学习与视觉计算组
14+阅读 · 2018年8月29日
STRCF for Visual Object Tracking
统计学习与视觉计算组
14+阅读 · 2018年5月29日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
11+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
0+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员