Traffic speed is central to characterizing the fluidity of the road network. Many transportation applications rely on it, such as real-time navigation, dynamic route planning, and congestion management. Rapid advances in sensing and communication techniques make traffic speed detection easier than ever. However, due to sparse deployment of static sensors or low penetration of mobile sensors, speeds detected are incomplete and far from network-wide use. In addition, sensors are prone to error or missing data due to various kinds of reasons, speeds from these sensors can become highly noisy. These drawbacks call for effective techniques to recover credible estimates from the incomplete data. In this work, we first identify the issue as a spatiotemporal kriging problem and propose a Laplacian enhanced low-rank tensor completion (LETC) framework featuring both lowrankness and multi-dimensional correlations for large-scale traffic speed kriging under limited observations. To be specific, three types of speed correlation including temporal continuity, temporal periodicity, and spatial proximity are carefully chosen and simultaneously modeled by three different forms of graph Laplacian, named temporal graph Fourier transform, generalized temporal consistency regularization, and diffusion graph regularization. We then design an efficient solution algorithm via several effective numeric techniques to scale up the proposed model to network-wide kriging. By performing experiments on two public million-level traffic speed datasets, we finally draw the conclusion and find our proposed LETC achieves the state-of-the-art kriging performance even under low observation rates, while at the same time saving more than half computing time compared with baseline methods. Some insights into spatiotemporal traffic data modeling and kriging at the network level are provided as well.


翻译:交通速度是确定公路网络流动性的核心。 许多交通应用,如实时导航、动态路线规划和拥堵管理等,都依赖这种技术。 遥感和通信技术的快速进步使得交通速度的探测比以往任何时候更加容易。 但是,由于静态传感器的部署稀少或移动传感器的低渗透率,所检测到的速度不完全,而且远非全网络范围的使用。此外,由于各种原因,传感器容易出错或丢失数据,这些传感器的速度会变得非常吵闹。这些缺陷要求采用有效的技术,从不完整的数据中恢复可信的估计。在这项工作中,我们首先将问题确定为超时半调问题,并提议采用拉平板强化的低调高压高压完成率(LETC)框架。然而,在有限的观测条件下,我们设计了一种高效的速度相关关系,包括时间的连续性、时间周期性能和空间模型的接近性能,由三种不同形式的图表,名为时间图4月度变换,普遍时间一致性调整,然后提出拉平式网络升级的升级,然后在更短调的轨道上进行高效的计算,然后在全局的轨道上,我们设计一个高效率的计算,然后在两个水平上,然后在标准的轨道上,我们设计一个高效的计算。 。 我们设计一个高效的计算,然后在使用高效的计算,在2级的计算,在高压的轨道上,然后在高的计算中,然后在高压的计算,在2级的轨道上,在2级的轨道上,我们设计的计算。</s>

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月21日
Arxiv
11+阅读 · 2019年4月15日
VIP会员
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员