Computer vision has shown promising results in medical image processing. Pneumothorax is a deadly condition and if not diagnosed and treated at time then it causes death. It can be diagnosed with chest X-ray images. We need an expert and experienced radiologist to predict whether a person is suffering from pneumothorax or not by looking at the chest X-ray images. Everyone does not have access to such a facility. Moreover, in some cases, we need quick diagnoses. So we propose an image segmentation model to predict and give the output a mask that will assist the doctor in taking this crucial decision. Deep Learning has proved their worth in many areas and outperformed man state-of-the-art models. We want to use the power of these deep learning model to solve this problem. We have used U-net [13] architecture with ResNet [17] as a backbone and achieved promising results. U-net [13] performs very well in medical image processing and semantic segmentation. Our problem falls in the semantic segmentation category.
翻译:计算机视觉在医疗图像处理中显示出了令人乐观的结果。 肺炎球菌是一种致命的状态, 如果当时没有诊断和治疗, 就会导致死亡。 可以用胸部X光图像诊断出来。 我们需要一位专家和经验丰富的放射学家来预测一个人是否患有肺炎球菌, 而不是通过检查胸部X光图像。 每个人都无法进入这种设施。 此外, 在某些情况下, 我们需要快速诊断。 因此, 我们提议一个图像分割模型来预测和给输出一个面罩, 以帮助医生做出这一关键决定。 深习已经证明了他们在许多领域的价值, 并且超越了人类的先进模型。 我们想利用这些深度学习模型的力量来解决这个问题。 我们用 ResNet (17) 的 U- net (13) 建筑作为脊梁, 并取得了很有希望的结果 。 U- net (13) 在医学图像处理和语义分割中表现得非常好。 我们的问题在语系分割类别中。