Modeling a crystal as a periodic point set, we present a fingerprint consisting of density functions that facilitates the efficient search for new materials and material properties. We prove invariance under isometries, continuity, and completeness in the generic case, which are necessary features for the reliable comparison of crystals. The proof of continuity integrates methods from discrete geometry and lattice theory, while the proof of generic completeness combines techniques from geometry with analysis. The fingerprint has a fast algorithm based on Brillouin zones and related inclusion-exclusion formulae. We have implemented the algorithm and describe its application to crystal structure prediction.
翻译:将晶体建模成一个定期点集,我们提供由密度功能组成的指纹,以便利有效搜索新的材料和材料特性。我们证明,在通用情况下,不存在易碎、连续性和完整性,这些是可靠比较晶体的必要特征。连续性的证据结合了离散几何学和衬装理论的方法,而通用完整性的证据则结合了几何学和分析技术。指纹具有基于布留罗昆区和相关包容-排除公式的快速算法。我们已经实施了算法,并描述了其在晶体结构预测中的应用。