Performing deep learning on end-user devices provides fast offline inference results and can help protect the user's privacy. However, running models on untrusted client devices reveals model information which may be proprietary, i.e., the operating system or other applications on end-user devices may be manipulated to copy and redistribute this information, infringing on the model provider's intellectual property. We propose the use of ARM TrustZone, a hardware-based security feature present in most phones, to confidentially run a proprietary model on an untrusted end-user device. We explore the limitations and design challenges of using TrustZone and examine potential approaches for confidential deep learning within this environment. Of particular interest is providing robust protection of proprietary model information while minimizing total performance overhead.


翻译:在终端用户装置上进行深入学习可提供快速离线推断结果,有助于保护用户隐私。然而,在无信任客户装置上运行的模型揭示出可能是专有的模型信息,即操作系统或终端用户装置上的其他应用程序可能被操纵来复制和重新分配这一信息,从而侵犯示范供应商的知识产权。我们提议使用大多数电话中存在的硬件安全功能ARM Trust区,秘密运行一个无信任终端装置的专有模型。我们探索使用信任区的局限性和设计挑战,并研究在这一环境中保密深层学习的潜在方法。特别感兴趣的是提供强有力的专利模型信息保护,同时尽量减少总体性能管理。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Arxiv
45+阅读 · 2019年12月20日
Advances and Open Problems in Federated Learning
Arxiv
18+阅读 · 2019年12月10日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
Top
微信扫码咨询专知VIP会员