Distributing entanglement over long distances is one of the central tasks in quantum networks. An important problem, especially for near-term quantum networks, is to develop optimal entanglement distribution protocols that take into account the limitations of current and near-term hardware, such as quantum memories with limited coherence time. We address this problem by initiating the study of quantum network protocols for entanglement distribution using the theory of decision processes, such that optimal protocols (referred to as policies in the context of decision processes) can be found using dynamic programming or reinforcement learning algorithms. As a first step, in this work we focus exclusively on the elementary link level. We start by defining a quantum decision process for elementary links, along with figures of merit for evaluating policies. We then provide two algorithms for determining policies, one of which we prove to be optimal (with respect to fidelity and success probability) among all policies. Then we show that the previously-studied memory-cutoff protocol can be phrased as a policy within our decision process framework, allowing us to obtain several new fundamental results about it. The conceptual developments and results of this work pave the way for the systematic study of the fundamental limitations of near-term quantum networks, and the requirements for physically realizing them.
翻译:长距离分解是量子网络的核心任务之一。一个重要的问题,特别是对于近期量子网络来说,是制定考虑到当前和近期硬件(如量子记忆)局限性的最佳量子纠缠分配协议,例如数量记忆,但一致性时间有限。我们通过利用决策过程理论,开始研究量子网络协议,以纠缠分布,来解决这一问题,这样就能够利用动态程序或强化学习算法来找到最佳协议(即决策过程背景下的政策)。作为第一步,我们在这项工作中只侧重于基本联系水平。我们首先确定基本联系的量子决定程序,同时确定评估政策的价值数字。然后,我们提出确定政策的两个算法,其中的一个算法被证明是所有政策之间最理想的(在忠诚和成功概率方面)。然后,我们表明,以前研究过的记忆-终止协议可以被描述为我们决策过程框架内的一项政策,从而使我们能够获得关于它的若干新的基本结果。这项工作的概念发展和结果为基本联系确定基本联系水平,同时提供评估政策的价值数字。我们然后提供两种算法,用以确定政策,其中的一种算出我们证明在所有政策之间最理想的算法(在忠诚和成功可能性方面)最理想的算法。 然后,我们可以把以前研究的记忆-结束的网络的基本限制定义为实现它们。