The focus of this paper is to demonstrate an over-the-air (OTA) 5G new radio (NR) sidelink communication prototype. 5G NR sidelink communications allow NR UEs to transfer data independently without the assistance of a base station (gNB), which enables V2X communications, including platooning, autonomous driving, sensor extension, industrial IoT, public safety communication and much more. Our design leverages the open-source OpenAirInterface5G (OAI) software, which operates on software-defined radios (SDRs) and can be easily extended for mesh networking. The software includes all signal processing components specified by the 3GPP 5G sidelink standards, including Low-Density Parity Check (LDPC) encoding/decoding, polar encoding/decoding, data and control multiplexing, modulation/demodulation, and orthogonal frequency-division multiplexing (OFDM) modulation/demodulation. It can be configured to operate with different bands, bandwidths, and antenna settings. The first milestone in this work was to demonstrate the completed Physical Sidelink Broadcast Channel (PSBCH) development, which conducts synchronization between a Synchronization Reference (SyncRef) UE and a nearby UE. The SyncRef UE broadcasts a sidelink synchronization signal block (S-SSB) periodically, which the nearby UE detects and uses to synchronize its timing and frequency components with the SyncRef UE. Once a connection is established, the next developmental milestone is to transmit real data (text messages) via the Physical Sidelink Shared Channel (PSSCH). Our PHY sidelink framework is tested using both an RF simulator and an OTA testbed with multiple nearby UEs. Beyond the development of synchronization and data transmission/reception in 5G sidelink, we conclude with various performance tests and validation experiments. The results of these metrics show that our simulator is comparable to the OTA testbed.
翻译:暂无翻译