We consider variants of the classical Frank-Wolfe algorithm for constrained smooth convex minimization, that instead of access to the standard oracle for minimizing a linear function over the feasible set, have access to an oracle that can find an extreme point of the feasible set that is closest in Euclidean distance to a given vector. We first show that for many feasible sets of interest, such an oracle can be implemented with the same complexity as the standard linear optimization oracle. We then show that with such an oracle we can design new Frank-Wolfe variants which enjoy significantly improved complexity bounds in case the set of optimal solutions lies in the convex hull of a subset of extreme points with small diameter (e.g., a low-dimensional face of a polytope). In particular, for many $0\text{--}1$ polytopes, under quadratic growth and strict complementarity conditions, we obtain the first linearly convergent variant with rate that depends only on the dimension of the optimal face and not on the ambient dimension.


翻译:我们考虑传统的弗兰克-沃夫算法的变体,以限制光滑的孔雀最小化,而不是使用标准的孔雀,以尽量减少可行的一组线性功能,而是可以找到在欧几里得距离最接近给定矢量的一套可行方法的极端点的神器。我们首先表明,对于许多可行的利益组,这种神器可以与标准的线性优化或触角一样复杂地执行。我们然后表明,有了这样一个神鹰,我们可以设计新的弗兰克-沃夫变体,这些变体如果最佳的解决方案是在小直径(例如多管的低维度面)的一组极端点的螺旋体内,那么它们就具有大大改进的复杂界限。特别是,对于许多多端电脑来说,在四面增长和严格的互补条件下,我们获得了第一个线性趋同式变体,其速度只取决于最佳面的尺寸,而不是环境层面。

0
下载
关闭预览

相关内容

甲骨文公司,全称甲骨文股份有限公司(甲骨文软件系统有限公司),是全球最大的企业级软件公司,总部位于美国加利福尼亚州的红木滩。1989年正式进入中国市场。2013年,甲骨文已超越 IBM ,成为继 Microsoft 后全球第二大软件公司。
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
17+阅读 · 2020年9月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年3月29日
Arxiv
0+阅读 · 2021年3月28日
Arxiv
0+阅读 · 2021年3月25日
Arxiv
3+阅读 · 2018年10月18日
VIP会员
相关VIP内容
专知会员服务
50+阅读 · 2020年12月14日
专知会员服务
123+阅读 · 2020年9月8日
专知会员服务
17+阅读 · 2020年9月6日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员