We consider variants of the classical Frank-Wolfe algorithm for constrained smooth convex minimization, that instead of access to the standard oracle for minimizing a linear function over the feasible set, have access to an oracle that can find an extreme point of the feasible set that is closest in Euclidean distance to a given vector. We first show that for many feasible sets of interest, such an oracle can be implemented with the same complexity as the standard linear optimization oracle. We then show that with such an oracle we can design new Frank-Wolfe variants which enjoy significantly improved complexity bounds in case the set of optimal solutions lies in the convex hull of a subset of extreme points with small diameter (e.g., a low-dimensional face of a polytope). In particular, for many $0\text{--}1$ polytopes, under quadratic growth and strict complementarity conditions, we obtain the first linearly convergent variant with rate that depends only on the dimension of the optimal face and not on the ambient dimension.
翻译:我们考虑传统的弗兰克-沃夫算法的变体,以限制光滑的孔雀最小化,而不是使用标准的孔雀,以尽量减少可行的一组线性功能,而是可以找到在欧几里得距离最接近给定矢量的一套可行方法的极端点的神器。我们首先表明,对于许多可行的利益组,这种神器可以与标准的线性优化或触角一样复杂地执行。我们然后表明,有了这样一个神鹰,我们可以设计新的弗兰克-沃夫变体,这些变体如果最佳的解决方案是在小直径(例如多管的低维度面)的一组极端点的螺旋体内,那么它们就具有大大改进的复杂界限。特别是,对于许多多端电脑来说,在四面增长和严格的互补条件下,我们获得了第一个线性趋同式变体,其速度只取决于最佳面的尺寸,而不是环境层面。