We consider the problem of estimating the state of a noisy linear dynamical system when an unknown subset of sensors is arbitrarily corrupted by an adversary. We propose a secure state estimation algorithm, and derive (optimal) bounds on the achievable state estimation error given an upper bound on the number of attacked sensors. The proposed state estimator involves Kalman filters operating over subsets of sensors to search for a sensor subset which is reliable for state estimation. To further improve the subset search time, we propose Satisfiability Modulo Theory based techniques to exploit the combinatorial nature of searching over sensor subsets. Finally, as a result of independent interest, we give a coding theoretic view of attack detection and state estimation against sensor attacks in a noiseless dynamical system.
翻译:我们考虑了当一个未知的传感器子集被对手任意腐蚀时对噪音线性动态系统状态进行估计的问题。 我们提出了一个安全的国家估计算法,并根据被攻击传感器数量上限,得出(最佳)可实现的状态估计误差。 拟议的州估计器涉及在传感器子集上运行的Kalman过滤器,以搜索可靠国家估计的传感器子集。 为了进一步改善子集搜索时间,我们提议基于可满足性莫杜洛理论的技术,以利用对传感器子集进行搜索的组合性质。 最后,出于独立的兴趣,我们给出了攻击探测的编码观点,并对无噪音动态系统中的传感器攻击进行了状态估计。