Given a family of graphs $\mathcal{F}$, we define the $\mathcal{F}$-saturation game as follows. Two players alternate adding edges to an initially empty graph on $n$ vertices, with the only constraint being that neither player can add an edge that creates a subgraph in $\mathcal{F}$. The game ends when no more edges can be added to the graph. One of the players wishes to end the game as quickly as possible, while the other wishes to prolong the game. We let $\textrm{sat}_g(n,\mathcal{F})$ denote the number of edges that are in the final graph when both players play optimally. In general there are very few non-trivial bounds on the order of magnitude of $\textrm{sat}_g(n,\mathcal{F})$. In this work, we find collections of infinite families of cycles $\mathcal{C}$ such that $\textrm{sat}_g(n,\mathcal{C})$ has linear growth rate.
翻译:根据图表 $\ mathcal{ F} 美元, 我们定义了 $\ mathcal{ F} $- 饱和游戏如下。 两个玩家在 $n vertices 的初始空白图形上另加边, 唯一的限制是两个玩家都无法在 $\ mathcal{ F} $ 中添加一个边际来创建子图 $mathcal{ f} $ 。 游戏结束时不能在图形中添加边际 。 一个玩家希望尽快结束游戏, 而另一个玩家希望延长游戏 。 我们让 $\ textrm{ sat} (n,\ macal{ F}) 来表示在最后的图表中, 当两个玩家玩得最佳时, 边际的边际数是多少 。 一般来说, 在 $\ textrm{ { g,\ mac} 的大小顺序上, 没有什么非边界的边际框 。 在这项工作中, 我们发现 $\ textrm{ c{ c} arrendr= creg{ creg{ c} g} greg{ creg{ creg} 。