Conditional density estimation (CDE) models can be useful for many statistical applications, especially because the full conditional density is estimated instead of traditional regression point estimates, revealing more information about the uncertainty of the random variable of interest. In this paper, we propose a new methodology called Odds Conditional Density Estimator (OCDE) to estimate conditional densities in a supervised learning scheme. The main idea is that it is very difficult to estimate $p_{x,y}$ and $p_{x}$ in order to estimate the conditional density $p_{y|x}$, but by introducing an instrumental distribution, we transform the CDE problem into a problem of odds estimation, or similarly, training a binary probabilistic classifier. We demonstrate how OCDE works using simulated data and then test its performance against other known state-of-the-art CDE methods in real data. Overall, OCDE is competitive compared with these methods in real datasets.
翻译:有条件密度估计(CDE)模型对于许多统计应用可能有用,特别是因为完全的有条件密度是估算的,而不是传统的回归点估计,揭示了更多关于随机利益变量不确定性的信息。在本文中,我们提出了一种新的方法,即“Odds Conditional Density Estimator”(OCDE),用于在监管的学习计划中估算有条件密度。主要的想法是,很难估算$p ⁇ x,y}美元和$p ⁇ x}美元,以便估算有条件密度$p ⁇ yx},但是,通过引入一种工具分布,我们将CDE问题转化为概率估计问题,或类似地,培训一个二元性概率分类师。我们展示了OCDE如何使用模拟数据,然后在真实数据中根据其他已知的最新CDE方法测试其性能。总体而言,OCDE在真实数据集中与这些方法相比具有竞争力。