Given an irregular dense tensor, how can we efficiently analyze it? An irregular tensor is a collection of matrices whose columns have the same size and rows have different sizes from each other. PARAFAC2 decomposition is a fundamental tool to deal with an irregular tensor in applications including phenotype discovery and trend analysis. Although several PARAFAC2 decomposition methods exist, their efficiency is limited for irregular dense tensors due to the expensive computations involved with the tensor. In this paper, we propose DPar2, a fast and scalable PARAFAC2 decomposition method for irregular dense tensors. DPar2 achieves high efficiency by effectively compressing each slice matrix of a given irregular tensor, careful reordering of computations with the compression results, and exploiting the irregularity of the tensor. Extensive experiments show that DPar2 is up to 6.0x faster than competitors on real-world irregular tensors while achieving comparable accuracy. In addition, DPar2 is scalable with respect to the tensor size and target rank.
翻译:在一个不规则的密度高的地方, 我们如何有效地分析它? 一个不规则的密度高的是一组各列大小和行大小不同的矩阵。 PARAFAC2 分解是处理不规则的气压应用的基本工具, 包括苯型发现和趋势分析。 虽然存在几种PARAFAC2分解方法, 但是对于不规则的密度高的气压来说,它们的效率是有限的, 因为与气压有关的计算费用昂贵。 在本文中, 我们建议 DPar2, 一种可快速和可缩放的 PARAFAC2 分解方法, 用于不规则的密度高密度高的气压。 DPAR2 取得了很高的效率, 其方法是有效地压缩某一不规则的气压的每个切片矩阵, 谨慎地重新排列计算压缩结果, 以及利用十进制的不规则性。 广泛的实验显示, DPar2 比实际的不规则的气压高6.0x比竞争者要快, 同时达到相似的精确度。 此外, DPar2 在 10 尺寸和目标级上是可调整的。