Tensor decomposition has become an essential tool in many data science applications. Sparse Matricized Tensor Times Khatri-Rao Product (MTTKRP) is the pivotal kernel in tensor decomposition algorithms that decompose higher-order real-world large tensors into multiple matrices. Accelerating MTTKRP can speed up the tensor decomposition process immensely. Sparse MTTKRP is a challenging kernel to accelerate due to its irregular memory access characteristics. Implementing accelerators on Field Programmable Gate Array (FPGA) for kernels such as MTTKRP is attractive due to the energy efficiency and the inherent parallelism of FPGA. This paper explores the opportunities, key challenges, and an approach for designing a custom memory controller on FPGA for MTTKRP while exploring the parameter space of such a custom memory controller.
翻译:Tensor 分解已成为许多数据科学应用中的一个基本工具。 分解 Tensor Tensor Tensor Thatri- Rao Product (MTTKRP) 是高压分解算法中的关键内核, 将高顺序实际的大型 Excluding- World Exclobal Excessional- dicomfication 进程分解为多个矩阵。 加速 MTTKRP 能够大大加速 Excess 分解进程。 粗略 MTTKRP 由于其不规则的内存访问特性, 是一个难以加速的内核核心。 在可编程门阵列( FPGA) 上安装加速器对诸如 MTTKRP 这样的内核门阵列具有吸引力, 因为节能和FPGA 固有的平行性。 本文探讨了在探索这种自定义内存控制器的参数空间的同时, 如何设计 。