For graphs $G$ and $H$, an $H$-coloring of $G$ is an edge-preserving mapping from $V(G)$ to $V(H)$. In the $H$-Coloring problem the graph $H$ is fixed and we ask whether an instance graph $G$ admits an $H$-coloring. A generalization of this problem is $H$-ColoringExt, where some vertices of $G$ are already mapped to vertices of $H$ and we ask if this partial mapping can be extended to an $H$-coloring. We study the complexity of variants of $H$-Coloring in $F$-free graphs, i.e., graphs excluding a fixed graph $F$ as an induced subgraph. For integers $a,b,c \geq 1$, by $S_{a,b,c}$ we denote the graph obtained by identifying one endvertex of three paths on $a+1$, $b+1$, and $c+1$ vertices, respectively. For odd $k \geq 5$, by $W_k$ we denote the graph obtained from the $k$-cycle by adding a universal vertex. As our main algorithmic result we show that $W_5$-ColoringExt is polynomial-time solvable in $S_{2,1,1}$-free graphs. This result exhibits an interesting non-monotonicity of $H$-ColoringExt with respect to taking induced subgraphs of $H$. Indeed, $W_5$ contains a triangle, and $K_3$-Coloring, i.e., classical 3-coloring, is NP-hard already in claw-free (i.e., $S_{1,1,1}$-free) graphs. Our algorithm is based on two main observations: 1. $W_5$-ColoringExt in $S_{2,1,1}$-free graphs can be in polynomial time reduced to a variant of the problem of finding an independent set intersecting all triangles, and 2. the latter problem can be solved in polynomial time in $S_{2,1,1}$-free graphs. We complement this algorithmic result with several negative ones. In particular, we show that $W_5$-ColoringExt is NP-hard in $S_{3,3,3}$-free graphs. This is again uncommon, as usually problems that are NP-hard in $S_{a,b,c}$-free graphs for some constant $a,b,c$ are already hard in claw-free graphs.


翻译:$G 和 $H 。 对于图形 $G 和 $H, 以 美元平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面平面平面,平面平面平面平面平面平面平面平面平面平面平面,平面平面平面平面,平面平面平面平面,平面平面,平面平面,平面平面平面平面,平面平面平面平面平面平面,平面平面,平面,平面平面平面平面,平面,平面,平面平面平面,平面平面,平面,平面平面平面平面平面,平面,平面,平面,平面平面,平面,平面平面,平面平面平面平面平面,平面,平面,平面,平面平面平面,平面,平面平面平面平面平面平面平面,平面平面,平面平面平面平面平面,平面,平面,平面平面平面平面平面,平面,平面平面,平面,平面,平面平面

0
下载
关闭预览

相关内容

专知会员服务
17+阅读 · 2020年9月6日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年7月14日
Arxiv
0+阅读 · 2022年7月14日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员