In this note, we show that Graph Isomorphism (GI) is not $\textsf{AC}^{0}$-reducible to several problems, including the Latin Square Isotopy problem and isomorphism testing of several families of Steiner designs. As a corollary, we obtain that GI is not $\textsf{AC}^{0}$-reducible to isomorphism testing of Latin square graphs and strongly regular graphs arising from special cases of Steiner $2$-designs. We accomplish this by showing that the generator-enumeration technique for each of these problems can be implemented in $\beta_{2}\textsf{FOLL}$, which cannot compute Parity (Chattopadhyay, Tor\'an, & Wagner, $\textit{ACM Trans. Comp. Theory}$, 2013).
翻译:在本说明中,我们显示,图一形态(GI)不是可以减少若干问题的$(textsf{AC ⁇ 0)美元,包括拉丁美洲方形问题和对施泰纳设计的若干家庭进行无形态测试。作为必然结果,我们发现,GI不是$(textsf{AC ⁇ 0})美元,可用于对拉丁方形和因施泰纳设计特例产生的强烈常规图形进行无形态测试。我们通过显示每个问题的生成-数字技术可以用美元来实施,而美元则无法计算Pity(Chattopadhyay,Tor\'an, & Wagner,$\textit{MAC Trans.comp.Theory}$,2013)。