Agent-based modeling plays an essential role in gaining insights into biology, sociology, economics, and other fields. However, many existing agent-based simulation platforms are not suitable for large-scale studies due to the low performance of the underlying simulation engines. To overcome this limitation, we present a novel high-performance simulation engine. We identify three key challenges for which we present the following solutions. First, to maximize parallelization, we present an optimized grid to search for neighbors and parallelize the merging of thread-local results. Second, we reduce the memory access latency with a NUMA-aware agent iterator, agent sorting with a space-filling curve, and a custom heap memory allocator. Third, we present a mechanism to omit the collision force calculation under certain conditions. Our evaluation shows an order of magnitude improvement over Biocellion, three orders of magnitude speedup over Cortex3D and NetLogo, and the ability to simulate 1.72 billion agents on a single server. Supplementary Materials, including instructions to reproduce the results, are available at: https://doi.org/10.5281/zenodo.6463816


翻译:在深入了解生物学、社会学、经济学和其他领域方面,基于代理的模型建模起着至关重要的作用。然而,许多现有的基于代理的模拟平台由于基础模拟引擎的性能低,不适合大规模研究。为了克服这一局限性,我们提出了一个新型的高性能模拟引擎。我们找出了三种关键挑战,为此我们提出了以下解决方案。首先,为了最大限度地实现平行化,我们提出了一个最佳网格,以搜索邻居,并同时使用线形局部结果。第二,我们用NUMA-awe代理代机减少内存延缓,用一个空间填充曲线排序的代理机,以及一个定制的缓冲存储器。第三,我们提出了一个机制,在某些条件下省略碰撞力计算。我们的评估显示生物细胞的强度改进程度,Cortex3D和NetLogo的3级加速速度,以及模拟单一服务器上17.2亿剂的能力。补充材料,包括复制结果的指示,见:https://doi.org/10858/zeno63816。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
120+阅读 · 2022年4月21日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
31+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月7日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员