A linear code is said to be self-orthogonal if it is contained in its dual. Self-orthogonal codes are of interest because of their important applications, such as for constructing linear complementary dual (LCD) codes and quantum codes. In this paper, we construct several new families of ternary self-orthogonal codes by employing weakly regular plateaued functions. Their parameters and weight distributions are completely determined. Then we apply these self-orthogonal codes to construct several new families of ternary LCD codes. As a consequence, we obtain many (almost) optimal ternary self-orthogonal codes and LCD codes.
翻译:暂无翻译