There are common semantics shared across text and images. Given a sentence in a source language, whether depicting the visual scene helps translation into a target language? Existing multimodal neural machine translation methods (MNMT) require triplets of bilingual sentence - image for training and tuples of source sentence - image for inference. In this paper, we propose ImagiT, a novel machine translation method via visual imagination. ImagiT first learns to generate visual representation from the source sentence, and then utilizes both source sentence and the "imagined representation" to produce a target translation. Unlike previous methods, it only needs the source sentence at the inference time. Experiments demonstrate that ImagiT benefits from visual imagination and significantly outperforms the text-only neural machine translation baselines. Further analysis reveals that the imagination process in ImagiT helps fill in missing information when performing the degradation strategy.
翻译:文本和图像之间有共同的语义。 对于一种源语言的句子, 描述视觉场景是否有助于翻译成目标语言? 现有的多式神经机翻译方法( MNMT) 需要三重双语句子( 用于培训的图像和源句的图象) 。 在本文中, 我们提出ImagiT, 一种通过视觉想象的新型机器翻译方法。 ImagiT 首先学会从源语句中生成视觉表达, 然后使用源语句和“ 想象表达” 来生成目标翻译。 与以往的方法不同, 它只需要在推断时间使用源语句。 实验表明, ImagiT 受益于视觉想象力, 大大超过纯文本的神经机翻译基线。 进一步的分析显示, ImagiT 的想象力过程有助于在进行降解策略时填充缺失的信息 。