There are common semantics shared across text and images. Given a sentence in a source language, whether depicting the visual scene helps translation into a target language? Existing multimodal neural machine translation methods (MNMT) require triplets of bilingual sentence - image for training and tuples of source sentence - image for inference. In this paper, we propose ImagiT, a novel machine translation method via visual imagination. ImagiT first learns to generate visual representation from the source sentence, and then utilizes both source sentence and the "imagined representation" to produce a target translation. Unlike previous methods, it only needs the source sentence at the inference time. Experiments demonstrate that ImagiT benefits from visual imagination and significantly outperforms the text-only neural machine translation baselines. Further analysis reveals that the imagination process in ImagiT helps fill in missing information when performing the degradation strategy.


翻译:文本和图像之间有共同的语义。 对于一种源语言的句子, 描述视觉场景是否有助于翻译成目标语言? 现有的多式神经机翻译方法( MNMT) 需要三重双语句子( 用于培训的图像和源句的图象) 。 在本文中, 我们提出ImagiT, 一种通过视觉想象的新型机器翻译方法。 ImagiT 首先学会从源语句中生成视觉表达, 然后使用源语句和“ 想象表达” 来生成目标翻译。 与以往的方法不同, 它只需要在推断时间使用源语句。 实验表明, ImagiT 受益于视觉想象力, 大大超过纯文本的神经机翻译基线。 进一步的分析显示, ImagiT 的想象力过程有助于在进行降解策略时填充缺失的信息 。

0
下载
关闭预览

相关内容

机器翻译(Machine Translation)涵盖计算语言学和语言工程的所有分支,包含多语言方面。特色论文涵盖理论,描述或计算方面的任何下列主题:双语和多语语料库的编写和使用,计算机辅助语言教学,非罗马字符集的计算含义,连接主义翻译方法,对比语言学等。 官网地址:http://dblp.uni-trier.de/db/journals/mt/
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
【Google】无监督机器翻译,Unsupervised Machine Translation
专知会员服务
35+阅读 · 2020年3月3日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
3+阅读 · 2018年4月11日
Arxiv
3+阅读 · 2018年3月28日
Arxiv
5+阅读 · 2018年1月16日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
MoCoGAN 分解运动和内容的视频生成
CreateAMind
18+阅读 · 2017年10月21日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员