Dynamical systems minimizing an energy are ubiquitous in geometry and physics. We propose a gradient flow framework for GNNs where the equations follow the direction of steepest descent of a learnable energy. This approach allows to explain the GNN evolution from a multi-particle perspective as learning attractive and repulsive forces in feature space via the positive and negative eigenvalues of a symmetric "channel-mixing" matrix. We perform spectral analysis of the solutions and conclude that gradient flow graph convolutional models can induce a dynamics dominated by the graph high frequencies which is desirable for heterophilic datasets. We also describe structural constraints on common GNN architectures allowing to interpret them as gradient flows. We perform thorough ablation studies corroborating our theoretical analysis and show competitive performance of simple and lightweight models on real-world homophilic and heterophilic datasets.
翻译:将能量最小化的动态系统在几何学和物理学中普遍存在。 我们为GNN提出一个梯度流框架,使GNN的方程式遵循可学习能源最陡峭的下降方向。 这种方法可以将GNN的进化从多粒角度解释为通过对称“通道混合”矩阵正负的等离子值学习地貌的有吸引力和令人厌恶的力量。 我们对这些解决方案进行光谱分析,并得出结论,梯度流图共振模型可以产生由高频率图形主宰的动态,而高频率对于异性嗜好数据集是可取的。 我们还将通用GNNN结构的结构性限制描述为梯度流。 我们进行彻底的反差研究,以证实我们的理论分析,并展示在现实世界的同源和异性哲学数据集中简单和轻量模型的竞争性性表现。