We extend the discrete majorization theory by working with non-normalized Lorenz curves. Then we prove two generalizations of the Muirhead theorem. These not only use elementary transfers but also local increases. Together these operations are described as elementary impact increases. The first generalization shows that if an array X is dominated, in the generalized sense, by an array Y then Y can be derived from X by a finite number of elementary impact increases and this in such a way that each step transforms an array into a new one which is strictly larger in the generalized majorization sense. The other one shows that if the dominating array, Y, is ordered decreasingly then elementary impact increases starting from the dominated array, X, lead to the dominating one. Here each step transforms an array to a new one for which the decreasingly ordered version dominates the previous one and is dominated by Y.
翻译:我们通过使用非常规的洛伦茨曲线来扩展离散主控理论。 然后我们证明穆尔黑头定理的两个概括性。 这些不仅使用初级转移, 而且还使用局部增长。 这些操作被描述为基本撞击的增加。 第一个概括化显示,如果一个阵列X在广义上被一个阵列Y所支配, 那么Y就可以通过一个有限数量的基本撞击增加从X而产生, 这样一来, 每一步就可以将一个阵列转换为一个新的阵列, 而在普遍主控感中, 这个阵列的严格规模更大。 另一个显示, 如果支配阵列Y从占主导地位的阵列开始, 则命令减少, 然后基本影响增加, 导致占支配地位的阵列。 这里每一步将一个阵列转换为一个新的阵列, 而对于这个阵列, 逐渐减少的定序的阵列将控制上一个阵列, 并且由Y 支配。