In this contribution we analyze the exponential stability of power networks modeled with the Telegrapher's equations as a system of balance laws on the edges. We show the equivalence of periodic solutions of these Telegrapher's equations and solutions to the well-established powerflow equations. In addition we provide a second-order accurate numerical scheme to integrate the powerflow equations and show (up to the boundary conditions) Lyapunov stability of the scheme.
翻译:本文我们分析了以电报员的方程式为模型的电源网络指数稳定性,作为边缘平衡法体系。我们展示了这些电报员方程式的定期解决方案和既定电流方程式的解决方案的等同性。此外,我们提供了一个二级精确数字计划,以整合电流方程式并显示(直至边界条件)Lyapunov的系统稳定性。