This paper presents a method to design a min-norm Control Lyapunov Function (CLF)-based stabilizing controller for a control-affine system with uncertain dynamics using Gaussian Process (GP) regression. In order to estimate both state and input-dependent model uncertainty, we propose a novel compound kernel that captures the control-affine nature of the problem. Furthermore, by the use of GP Upper Confidence Bound analysis, we provide probabilistic bounds of the regression error, leading to the formulation of a CLF-based stability chance constraint which can be incorporated in a min-norm optimization problem. We show that this resulting optimization problem is convex, and we call it Gaussian Process-based Control Lyapunov Function Second-Order Cone Program (GP-CLF-SOCP). The data-collection process and the training of the GP regression model are carried out in an episodic learning fashion. We validate the proposed algorithm and controller in numerical simulations of an inverted pendulum and a kinematic bicycle model, resulting in stable trajectories which are very similar to the ones obtained if we actually knew the true plant dynamics.
翻译:本文展示了一种方法,用于设计基于控制控制 Lyapunov 函数(CLF) 的基于控制- 控制室稳定控制器(CLF), 用于使用 Gaussian 进程(GP) 回归, 具有不确定的动态控制- 控制- 调控系统。 为了估算状态和投入型模型的不确定性, 我们提议了一个新的复合内核内核, 以捕捉问题的控制- 控制- 控制 Lyapunov 函数( CLyapunov) 。 此外, 通过使用 GP 高信任波谱分析, 我们提供了回归错误的概率界限, 导致形成基于 CLLF 的稳定性机会限制。 我们显示, 由此产生的优化问题是 convex, 我们称之为 Gausian 进程控制 Lyapunov 函数第二Order Cone 程序( GP- COLF- SOP) 。 数据收集进程和GPLF 回归模型培训是以一种直观学习方式进行的。 我们验证了在反向的笔和运动自行车模型的数字模拟中拟议的算算算算算法和控制器, 导致稳定的轨轨轨轨非常相似, 如果我们知道实际获得的动态。