The number of parameters in deep neural networks (DNNs) is scaling at about 5$\times$ the rate of Moore's Law. To sustain the pace of growth of the DNNs, new technologies and computing architectures are needed. Photonic computing systems are promising avenues, since they can perform the dominant general matrix-matrix multiplication (GEMM) operations in DNNs at a higher throughput than their electrical counterpart. However, purely photonic systems face several challenges including a lack of photonic memory, the need for conversion circuits, and the accumulation of noise. In this paper, we propose a hybrid electro-photonic system realizing the best of both worlds to accelerate DNNs. In contrast to prior work in photonic and electronic accelerators, we adopt a system-level perspective. Our electro-photonic system includes an electronic host processor and DRAM, and a custom electro-photonic hardware accelerator called ADEPT. The fused hardware accelerator leverages a photonic computing unit for performing highly-efficient GEMM operations and a digital electronic ASIC for storage and for performing non-GEMM operations. We also identify architectural optimization opportunities for improving the overall ADEPT's efficiency. We evaluate ADEPT using three state-of-the-art neural networks-ResNet-50, BERT-large, and RNN-T-to show its general applicability in accelerating today's DNNs. A head-to-head comparison of ADEPT with systolic array architectures shows that ADEPT can provide, on average, 7.19$\times$ higher inference throughput per watt.


翻译:深度神经网络(DNNS)的参数数量以摩尔法律的速率约5美元计算。 为了保持DNNS的增长速度,需要新技术和计算结构。光学计算系统是充满希望的渠道,因为光学计算系统可以以高于其电子对口的更高传输量在DNS中执行占主导地位的一般矩阵矩阵矩阵矩阵倍增(GEMM)操作。然而,纯光学系统面临若干挑战,包括缺乏光学内存、转换电路需要和噪音累积。在本文件中,我们提议建立一个混合电光学系统,实现两个世界的最佳应用性,以加速DNNNNPS。与以前在光学和电子加速器方面开展的工作相比,我们采用了系统层面的观点。我们的电光学系统包括电子主机处理器和DRAM,以及定制电光学硬件加速器。 电动计算机加速器可以利用光学计算机计算机计算器进行高效的GEMMT操作,以及当今电子电子网络的升级50,用于进行非GEMM-M-M-S-S-S-S-S-SADAD-S-S-S-S-SADADAD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SAT-S-S-S-SD-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SAT-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-SAR-SD-SAR-SAR-SAR-SAR-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S

0
下载
关闭预览

相关内容

专知会员服务
49+阅读 · 2021年6月30日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
70+阅读 · 2020年8月2日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
开源书:PyTorch深度学习起步
专知会员服务
49+阅读 · 2019年10月11日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Arxiv
0+阅读 · 2021年10月23日
Arxiv
0+阅读 · 2021年10月20日
Arxiv
28+阅读 · 2021年9月18日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
VIP会员
相关资讯
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | UAI 2019等国际会议信息4条
Call4Papers
6+阅读 · 2019年1月14日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
AI/ML/DNN硬件加速设计怎么入门?
StarryHeavensAbove
10+阅读 · 2018年12月4日
计算机类 | 11月截稿会议信息9条
Call4Papers
6+阅读 · 2018年10月14日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
分布式TensorFlow入门指南
机器学习研究会
4+阅读 · 2017年11月28日
Top
微信扫码咨询专知VIP会员