We determine the computational complexity of approximately counting and sampling independent sets of a given size in bounded-degree graphs. That is, we identify a critical density $\alpha_c(\Delta)$ and provide (i) for $\alpha < \alpha_c(\Delta)$ randomized polynomial-time algorithms for approximately sampling and counting independent sets of given size at most $\alpha n$ in $n$-vertex graphs of maximum degree $\Delta$; and (ii) a proof that unless NP=RP, no such algorithms exist for $\alpha>\alpha_c(\Delta)$. The critical density is the occupancy fraction of the hard core model on the clique $K_{\Delta+1}$ at the uniqueness threshold on the infinite $\Delta$-regular tree, giving $\alpha_c(\Delta)\sim\frac{e}{1+e}\frac{1}{\Delta}$ as $\Delta\to\infty$. Our methods apply more generally to anti-ferromagnetic 2-spin systems and motivate new questions in extremal combinatorics.
翻译:我们确定在约束度图形中大约计算和取样某一尺寸独立数组的计算复杂性。 也就是说, 我们确定一个关键密度$\alpha_ c( delta), 并提供 (一) $alpha <\ alpha_ c( delta)$ 随机化的多元时间算法, 用于在最多为$\alpha n$( Delta) 的普通树上大约取样和计算特定尺寸独立数组, 以美元/ alpha n$( delta)\ delta$ ; 以及 (二) 证明, 除非 NP=RP, $\ alpha_ alpha_ c(\ delta) 美元不存在这种关键密度。 关键密度是 clifta\ delta+1} 硬核心模型在无限为$\ delta$- c( delta)\ c( delta)\ c( develop)\ signalfexexexion legetal lex- gromagnistrical- gropsyls.