Context: Container data types are ubiquitous in computer programming, enabling developers to efficiently store and process collections of data with an easy-to-use programming interface. Many programming languages offer a variety of container implementations in their standard libraries based on data structures offering different capabilities and performance characteristics. Inquiry: Choosing the *best* container for an application is not always straightforward, as performance characteristics can change drastically in different scenarios, and as real-world performance is not always correlated to theoretical complexity. Approach: We present Primrose, a language-agnostic tool for selecting the best performing valid container implementation from a set of container data types that satisfy *properties* given by application developers. Primrose automatically selects the set of valid container implementations for which the *library specifications*, written by the developers of container libraries, satisfies the specified properties. Finally, Primrose ranks the valid library implementations based on their runtime performance. Knowledge: With Primrose, application developers can specify the expected behaviour of a container as a type refinement with *semantic properties*, e.g., if the container should only contain unique values (such as a `set`) or should satisfy the LIFO property of a `stack`. Semantic properties nicely complement *syntactic properties* (i.e., traits, interfaces, or type classes), together allowing developers to specify a container's programming interface *and* behaviour without committing to a concrete implementation. Grounding: We present our prototype implementation of Primrose that preprocesses annotated Rust code, selects valid container implementations and ranks them on their performance. The design of Primrose is, however, language-agnostic, and is easy to integrate into other programming languages that support container data types and traits, interfaces, or type classes. Our implementation encodes properties and library specifications into verification conditions in Rosette, an interface for SMT solvers, which determines the set of valid container implementations. We evaluate Primrose by specifying several container implementations, and measuring the time taken to select valid implementations for various combinations of properties with the solver. We automatically validate that container implementations conform to their library specifications via property-based testing. Importance: This work provides a novel approach to bring abstract modelling and specification of container types directly into the programmer's workflow. Instead of selecting concrete container implementations, application programmers can now work on the level of specification, merely stating the behaviours they require from their container types, and the best implementation can be selected automatically.
翻译:上下文 : 容器数据类型在计算机编程中无处不在, 使开发者能够高效存储和处理数据收集, 并使用简易的图书馆程序界面 。 许多编程语言提供基于具有不同能力和性能特点的数据结构的标准图书馆的集装箱实施方式 。 调查 : 选择用于应用程序的* best * 容器容器并非总是直截了当的, 因为性能特征在不同情景中可以发生急剧变化, 而真实世界的性能并不总是与理论复杂性相关 。 方法 : 我们提供 Primrose, 一种语言- nonos 工具, 用于从一套符合应用程序开发者提供的* precal- comm 的集装箱数据格式类型中选择最佳有效的集装箱实施方式 。 普里姆罗斯 将有效的图书馆实施方式排序为基于运行时间性能的特性 。 知识: 我们使用 Primrose, 应用程序开发者可以指定容器的预期行为方式, 用于与 * mantial 性质 、 e. g. 。 如果容器的运行系统运行系统,, 将 将 运行 性 性 性 性 性 性 性能 运行,, 运行,, 运行, 将 将 性 性 性能 性能 将 性能 性能 进行 性能 进行 进行 进行 进行 进行 进行 进行 性能 性能 进行 进行 进行 。