Context: Container data types are ubiquitous in computer programming, enabling developers to efficiently store and process collections of data with an easy-to-use programming interface. Many programming languages offer a variety of container implementations in their standard libraries based on data structures offering different capabilities and performance characteristics. Inquiry: Choosing the *best* container for an application is not always straightforward, as performance characteristics can change drastically in different scenarios, and as real-world performance is not always correlated to theoretical complexity. Approach: We present Primrose, a language-agnostic tool for selecting the best performing valid container implementation from a set of container data types that satisfy *properties* given by application developers. Primrose automatically selects the set of valid container implementations for which the *library specifications*, written by the developers of container libraries, satisfies the specified properties. Finally, Primrose ranks the valid library implementations based on their runtime performance. Knowledge: With Primrose, application developers can specify the expected behaviour of a container as a type refinement with *semantic properties*, e.g., if the container should only contain unique values (such as a `set`) or should satisfy the LIFO property of a `stack`. Semantic properties nicely complement *syntactic properties* (i.e., traits, interfaces, or type classes), together allowing developers to specify a container's programming interface *and* behaviour without committing to a concrete implementation. Grounding: We present our prototype implementation of Primrose that preprocesses annotated Rust code, selects valid container implementations and ranks them on their performance. The design of Primrose is, however, language-agnostic, and is easy to integrate into other programming languages that support container data types and traits, interfaces, or type classes. Our implementation encodes properties and library specifications into verification conditions in Rosette, an interface for SMT solvers, which determines the set of valid container implementations. We evaluate Primrose by specifying several container implementations, and measuring the time taken to select valid implementations for various combinations of properties with the solver. We automatically validate that container implementations conform to their library specifications via property-based testing. Importance: This work provides a novel approach to bring abstract modelling and specification of container types directly into the programmer's workflow. Instead of selecting concrete container implementations, application programmers can now work on the level of specification, merely stating the behaviours they require from their container types, and the best implementation can be selected automatically.


翻译:上下文 : 容器数据类型在计算机编程中无处不在, 使开发者能够高效存储和处理数据收集, 并使用简易的图书馆程序界面 。 许多编程语言提供基于具有不同能力和性能特点的数据结构的标准图书馆的集装箱实施方式 。 调查 : 选择用于应用程序的* best * 容器容器并非总是直截了当的, 因为性能特征在不同情景中可以发生急剧变化, 而真实世界的性能并不总是与理论复杂性相关 。 方法 : 我们提供 Primrose, 一种语言- nonos 工具, 用于从一套符合应用程序开发者提供的* precal- comm 的集装箱数据格式类型中选择最佳有效的集装箱实施方式 。 普里姆罗斯 将有效的图书馆实施方式排序为基于运行时间性能的特性 。 知识: 我们使用 Primrose, 应用程序开发者可以指定容器的预期行为方式, 用于与 * mantial 性质 、 e. g. 。 如果容器的运行系统运行系统,, 将 将 运行 性 性 性 性 性 性 性能 运行,, 运行,, 运行, 将 将 性 性 性能 性能 将 性能 性能 进行 性能 进行 进行 进行 进行 进行 进行 进行 性能 性能 进行 进行 进行 。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年4月11日
Arxiv
30+阅读 · 2021年8月18日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【SIGIR2018】五篇对抗训练文章
专知
12+阅读 · 2018年7月9日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员